Set the value of one of the modifiable elements of `standata`
set_standata.Rd
Set the value of one of the modifiable elements of `standata`
Usage
set_standata(
standata,
a_sig2 = NULL,
b_sig2 = NULL,
a_sig2_mu = NULL,
b_sig2_mu = NULL,
a_mu_offset = NULL,
b_mu_offset = NULL,
a_sig2_offset = NULL,
b_sig2_offset = NULL,
a_sig2_u = NULL,
b_sig2_u = NULL,
beta_phi_prior = NULL,
A_S = NULL,
B_S = NULL,
S_DATA = NULL,
normfactors_known = NULL,
use_neg_binomial_response = NULL
)
Arguments
- standata
The data list to be updated
- a_sig2
vector of shape parameters for Inverse Gamma priors on `sig2`
- b_sig2
vector of scale parameters for Inverse Gamma priors on `sig2`
- a_sig2_mu
vector of shape parameters for Inverse Gamma priors on `sig2_mu`
- b_sig2_mu
vector of scale parameters for Inverse Gamma priors on `sig2_mu`
- a_mu_offset
vector of shape parameters for Inverse Gamma priors on `mu_offset`
- b_mu_offset
vector of scale parameters for Inverse Gamma priors on `mu_offset`
- a_sig2_offset
vector of shape parameters for Inverse Gamma priors on `sig2_offset`
- b_sig2_offset
vector of scale parameters for Inverse Gamma priors on `sig2_offset`
- a_sig2_u
vector of shape parameters for Inverse Gamma priors on `sig2_u`
- b_sig2_u
vector of scale parameters for Inverse Gamma priors on `sig2_u`
- beta_phi_prior
2-vector giving location and scale parameters for the prior distribution of `beta_phi`
- A_S
location parameter for `S_PARAM` if `!normfactors_known`
- B_S
scale parameter for `S_PARAM` if `!normfactors_known`
- S_DATA
Numeric vector of normalization factors for each sample; optional, if `NULL` and `normfactors_known == TRUE`, normalization factors will be estimated by the `TMM` method as described in the `edgeR` package
- normfactors_known
Use fixed normalization factors extrinsic to the model?
- use_neg_binomial_response
Use the negative binomial distribution instead of Poisson for the errors?